Abstract

The characterization of single biological cells in a microfluidic flow by using a 2D light scattering microfluidic cytometric technique is described. Laser light is coupled into a microfluidic cytometer via an optical fiber to illuminate a single scatterer in a fluidic flow. The 2D light scattering patterns are obtained by using a charge-coupled device (CCD) detector. The system is tested by using standard polystyrene beads of 4 μm and 9.6 μm in diameter, and the bead experimental results agree well with 1D Mie theory simulation results. Experiments on yeast cells are performed using the microfluidic cytometer. Cell results are studied by finite-difference time-domain (FDTD) method, which can simulate light scattering from non-homogeneous cells. For example, a complex biological cell model with inner mitochondrial distribution is studied by FDTD in this paper. Considering the yeast cell size variations, the yeast cell 2D scatter patterns agree well with the FDTD 2D simulation patterns. The system is capable of obtaining 2D side scatter patterns from a single biological cell which may contain rich information on the biological cell inner structures. The integration of light scattering, microfluidics and fiber optics described here may ultimately allow the development of a lab-on-chip cytometer for label-free detection of diseases at a single cell level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call