Abstract

A fiber-coupled microfluidic cytometer has been recently developed in our group for the obtaining of 2D light scatter patterns from single biological cells. The obtained scatter patterns may be used for label-free characterization of biological cells. Understanding of these 2D scatter patterns can be better achieved by comparing the experimental results with those obtained by theoretical simulations, such as the finite-difference time-domain (FDTD) simulation of light scattering from biological cells. In this paper, we provide detailed study for applying the FDTD method in our fibercoupled microfluidic cytometer. The FDTD simulation results agree reasonably well with the experimentally obtained THP-1 cell 2D scatter patterns. Methods for scatter pattern analysis are under development in our group for new light scattering parameters that may potentially be used in clinics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call