Abstract

The floral transition marks the switch from vegetative to reproductive growth, and is controlled by different pathways responsive to endogenous and exogenous cues. The developmental switch is accompanied by local changes in chromatin such as histone modifications. In this study we demonstrate large-scale reorganization of chromatin in rosette leaves during the floral transition. An extensive reduction in chromocenters prior to bolting is followed by a recovery of the heterochromatin domains after elongation of the floral stem. The transient reduction in chromocenters is a result of relocation away from chromocenters of methylated DNA sequences, 5S rDNA and interspersed pericentromeric repeats, but not of 45S rDNA or the 180-bp centromere tandem repeats. Moreover, fluorescence in situ hybridization analysis revealed decondensation of chromatin in gene-rich regions. A mutant analysis indicated that the blue-light photoreceptor CRYPTOCHROME 2 is involved in triggering chromatin decondensation, suggesting a light-signaling pathway towards large-scale chromatin modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.