Abstract

Seed germination and flowering initiation are both transitions responding to similar seasonal cues. This study shows that ABSCISIC ACID-INSENSITIVE MUTANT 5 (ABI5), a bZIP transcription factor, which plays an important role in the abscisic acid (ABA)-arrested seed germination, is robustly associated with the floral transition in Arabidopsis. Under long-day conditions, overexpression of ABI5 could delay floral transition through upregulating FLOWERING LOCUS C (FLC) expression. In contrast, ectopically overexpressing FLC in an abi5 mutant reversed the earlier flowering phenotype. Further analysis indicated that transactivation of FLC could be promoted by ABI5 and/or other abscisic acid-responsive element (ABRE)-binding factors (ABFs). The expression of FLC that was promoted by ABI5 and/or other ABFs could be blocked in a triple SNF1-related protein kinase (SnRK) mutant, snrk2.2/2.3/2.6, despite the presence of ABA. In sharp contrast, when SnRK2.6 was coexpressed, the reduction of transactivity of FLC was reverted in mesophyll protoplasts of snrk2.2/2.3/2.6. Additional results from analysing transgenic plants carrying mutations of phosphoamino acids (ABI5 S42AS145AT201A), which are conserved in ABI5, suggested that SnRK2-mediated ABI5 and/or ABF phosphorylation may be crucial for promoting FLC expression. The transgenic plants ABI5 S42AS145AT201A were insensitive to ABA in seed germination, in addition to having an earlier flowering phenotype. Direct binding of ABI5 to the ABRE/G-box promoter elements existing in FLC was demonstrated by chromatin immunoprecipitation. Mutations at the ABRE/G-box regions in FLC promoter sequences abolished the ABI5-promoted transactivation of FLC. In summary, these results may decipher the inhibitory effect of ABA on floral transition in Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call