Abstract

The use of reflectors coated with a wavelength shifter (WLS) along with standard bialkali PMTs is an economical method for an efficient readout system for vacuum ultra violet (VUV) light produced in large liquid argon detectors. Various thicknesses of tetraphenyl butadiene (TPB) were deposited by spraying and vacuum evaporation onto both specular 3MTM-foil and diffuse TetratexTM (TTX) reflectors. 128 nm VUV light generated in 1 bar argon gas by a 5.4 MeV α source was detected by a 3-inch bialkali borosilicate PMT within a 1 m tube lined internally with a TPB coated reflector. The light collection was recorded as a function of separation between source and PMT for each combination of coating and reflector for distances up to 1m. Reflection coefficients of TPB coated reflectors were measured using a spectroradiometer. WLS coating on the PMT window was also studied. The optimum coating and reflector combination was TPB evaporated on TTX. Measurements with coating thicknesses of 0.2 mg/cm2 and 1.0 mg/cm2 yielded a similar performance. The best PMT window coating is obtained by TPB evaporation of 0.05 mg/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.