Abstract

Light propagation in optical waveguides with periodically modulated index of refraction and alternating gain and loss are investigated for linear and nonlinear systems. Based on a multiscale perturbation analysis, it is shown that for many non-parity-time ($\mathcal{PT}$) symmetric waveguides, their linear spectrum is partially complex, thus light exponentially grows or decays upon propagation, and this growth or delay is not altered by nonlinearity. However, several classes of non-$\mathcal{PT}$-symmetric waveguides are also identified to possess all-real linear spectrum. In the nonlinear regime longitudinally periodic and transversely quasi-localized modes are found for $\mathcal{PT}$-symmetric waveguides both above and below phase transition. These nonlinear modes are stable under evolution and can develop from initially weak initial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.