Abstract

This study reports light narrowing in paraffin-coated vapor cells from room temperature 27 to 59 °C, where spin-exchange relaxation is suppressed. By means of a coating lock and eliminating the reservoir effect, an ultra-narrow magnetic resonance linewidth of 0.36 Hz and an atomic coherence lifetime of T2=0.9 s are achieved. In cells free of buffer gas, the narrow linewidth over this broad temperature range is a result of enhanced spin polarization, which is facilitated by the effective suppression of radiation trapping benefiting from the stability of the vapor density. Using such cells in atomic magnetometers, the photon shot noise limit is estimated as 0.2 fT/Hz1/2 and the spin-projection noise limit is estimated as 1.1 fT/Hz1/2. Also, a magnetometer system with the stable coated cell is identified, which demonstrates the potential for achieving relatively stable magnetometer sensitivity without precisely controlling the cell temperature. The long coherence lifetime and the broad operating temperature range expand the potential applications of quantum memory and other quantum sensors such as atomic clocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.