Abstract
Trichinella spiralis infection is a food-borne zoonotic disease caused by nematodes that dwell in the tissues, presenting a significant public health concern. This study aimed to evaluate the effectiveness of different treatments including silver nanoparticles (AgNPs), myrrh biosynthesized AgNPs "AgNPs synthesized using plant-based green technologies", myrrh extract, and myrrh essential oil, as alternative treatments against T. spiralis infection. Parasitological, histopathological, and cytotoxicity assessments were conducted to investigate the effects of various concentrations of these treatments in reducing the populations of adult worms and larvae during both the intestinal and muscular phases of T. spiralis-infected mice. The results showed that the highest antihelminthic efficacy against the intestinal phase of T. spiralis was achieved by myrrh extract (86.66%), followed closely by AgNPs (84.96%) and myrrh AgNPs (82.51%) at higher concentrations (800 mg/kg for myrrh extract, 40 μg/mL for AgNPs, and 40 μg/mL for myrrh AgNPs). While the group treated with myrrh essential oil showed the lowest percentage of adult reduction (78.14%). However, all treatments demonstrated comparable effects in reducing the larvae population in the muscle phase. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. Additionally, a comprehensive assessment of the cytotoxicity of AgNPs indicated low toxicity levels. This study supports that AgNPs synthesized using plant-based green technologies hold therapeutic potential for the treatment of T. spiralis infection. These findings present a promising avenue for the development of novel antiparasitic drugs that are both effective and safe. RESEARCH HIGHLIGHTS: Myrrh extract has the highest antihelminthic efficacy against the intestinal phase of T. spiralis. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. During intestinal phase of T. spiralis, varying levels of nanoparticle precipitation were detected in the liver, brain, lung, and intestine. During the muscular phase, the highest amount of AgNPs precipitation was detected in the liver, followed by the brain, and lung.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have