Abstract
Effective strategies to optimize algal growth and lipid productivity are critical for the sustainable production of biomass for various applications. Light management has emerged as a promising approach, but the intricate relationship between light intensity, spectral quality, and algal responses remains poorly understood. This study investigated the effects of different light qualities (blue, red-orange, and white-yellow) and intensities (45-305 μmol/m2·s) on Chlamydomonas reinhardtii. Red-orange light exhibited the highest promotion of biomass growth and lipid productivity, with specific growth rates of 1.968 (d-1) and biomass productivity of 0.284 (g/L/d) at 155 μmol/m2·s and 205 μmol/m2·s, respectively. Within the intensity range of 205 μmol/m2·s to 305 μmol/m2·s, lipid mass fractions ranged from 10.5% w/w to 11.0% w/w, accompanied by lipid concentrations ranging from 68.6mg/L to 74.9mg/L. Red-orange light positively influenced carbohydrate accumulation, while blue light promoted protein synthesis. These findings highlight the importance of optimizing light quality and intensity to enhance algal biomass productivity and manipulate biochemical composition. Understanding the complex relationship between light parameters and algal physiology will contribute to sustainable algal cultivation practices and the use of microalgae as a valuable bioresource.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have