Abstract

The abilities of different wavelength ranges of light to promote the increase in the activities of the Euglena chloroplast protein synthesis elongation factors (EFs) during chloroplast biogenesis have been determined. Blue light was far more effective than either green light or red light in increasing the level of chloroplast EF-G, a nuclear encoded gene product. This observation suggests that the induction of EF-G chl is under the control of the blue photoreceptor that has been identified in Euglena. Blue light was also the most effective wavelength range in facilitating the increase in EF-Ts, a nuclear gene product, and EF-Tu, a chloroplast gene product. However, red light and surprisingly green light were also effective. These results are not consistent with either of the known blue or blue/red photoreceptor systems in Euglena being the sole component involved in the light induction of these two factors and suggest that a green photoresponse may also be important in the development of the chloroplast. The specific activity of the Euglena mitochondrial protein biosynthetic translocase (EF-G mt) decreased in cells exposed to light. Blue light caused an immediate decline in EF-G mt activity; whereas, there was a temporal delay in the decrease in EF-G mt activity when cells were exposed to either red or green light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.