Abstract
Environmentally persistent free radicals (EPFRs) in humic substances play an essential role in soil geochemical processes. Light is known to induce EPFRs formation for dissolved organic matter in aquatic environments; however, the impacts of light irradiation on the variation of EPFRs in soil humic substances remain unclear. In this study, humic acid, fulvic acid, and humin were extracted from peat soil and then in situ irradiated using simulated sunlight. Electron paramagnetic resonance spectroscopy results showed that with the increasing irradiation time, the spin densities and g-factors of humic substances rapidly increased during the initial 20 min and then gradually reached a plateau. After irradiation for 2h, the maximum spin density levels were up to 1.63 × 1017, 2.06 × 1017, and 1.77 × 1017 spins/g for the humic acid, fulvic acid, and humin, respectively. And the superoxide radicals increased to 1.05 × 1014–1.46 × 1014 spins/g while the alkyl radicals increased to 0.47 × 1014–1.76 × 1014 spins/g. The light-induced EPFRs were relatively unstable and readily returned back to their original state under dark and oxic conditions. Significant positive correlations were observed between the concentrations of EPFRs and reactive radical species (R2= 0.65–0.98, p < 0.05), which suggested that the newly produced EPFRs contributed to the formation of reactive radical species. Our findings indicate that under the irradiation humic substances are likely to be more toxic and reactive in soil due to the formation of EPFRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Environmental Science & Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.