Abstract

Environmentally persistent free radicals (EPFRs) was considered unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases like lung cancer. EPFRs in airborne fine particulate matter (PM2.5) can induce oxidative and DNA damage when inhaled. We assessed the inhalation risk of EPFRs in PM2.5 and factors influencing this risk in Beijing as a large city with frequent haze events. The average concentration of EPFRs in PM2.5 was 6.00×1017 spins/m3 in spring, autumn, and winter; lower concentrations were recorded in the summer. To estimate the daily inhalation risk of EPFRs in PM2.5, we used the equivalent EPFRs in cigarette tar. The average daily inhalation exposure of EPFRs in PM2.5 was estimated to be the equivalent of 33.1 cigarette tar EPFRs per day (range: 0.53-226.9) during both haze and non-haze days. The major factors influencing EPFR concentrations in the atmosphere were precipitation and humidity, which reduced airborne concentrations. Levels of PM2.5 and carbon monoxide were positively correlated with EPFR concentrations. The health risks of inhaling airborne EPFRs could be significant and should be recognized and quantified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call