Abstract

Carbon nanotubes (CNTs) have exhibited immense potential for applications in biology and medicine, and once their intended purpose is fulfilled, the elimination of residual CNTs is essential to avoid negative effects. In this study, we demonstrated the effective collection and simple removal of CNTs dispersed in a suspension via thermal convection. First, a tapered fiber tip with a cone angle and end diameter of 10° and 3 μm, respectively, was fabricated via a heating and pulling method. Further, a laser beam with a power and wavelength of 100 mW and 1.55 μm, respectively, was launched into the tapered fiber tip, which was placed in a CNT suspension, resulting in the formation of a microbubble on the fiber tip. The temperature gradient on the microbubble and suspension surface induced thermal convection in the suspension, which resulted in the accumulation of CNTs on the fiber tip. The experimentally formed CNT cluster possessed a circular top surface with a diameter of 87 μm and an arched cross-section with a height of 19 μm. Furthermore, this CNT cluster was firmly attached to the fiber tip. Therefore, the removal of CNT clusters can be realized by simply removing the fiber tip from the suspension. Moreover, we simulated the thermal convection that caused CNT aggregation. The obtained results indicate that convection near the fiber tip flows toward it, which pushes the CNTs toward the fiber tip and enables their attachment to it. Further, the flow velocity is symmetrically distributed as a Gaussian function, which results in the formation of a circular top surface and arched cross-sectional profile for the CNT cluster. Our method may be applied in biomedicine for the collection and removal of nano-drug residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.