Abstract
This paper presents the light-induced effects in bismuth silicon and bismuth titanium oxide crystals associated both with the electron transitions into the conduction band and with the filling of shallow and deep traps, which determine the optical and electroconductive properties of these crystals. The dynamics of photoconductivity and light-induced absorption is analyzed under conditions of pulsed laser illumination at the wavelength of 532nm. The possibility to describe the relaxation processes of a population for trapping levels with the use of two-exponential function is demonstrated. The photoconductivity dynamics is characterized by two relaxation times on the order of 100ns and 10μs, whereas for light-induced absorption the lifetimes about 10μs and several days for short- and long-lived traps, respectively, have been obtained. Because of this, the relaxation transitions may be occurred both to the shallow trap centers with energy located close to the conduction band and to the deep-lying traps, which should be included into a diversified theoretical model adequately describing the light-induced phenomena in photorefractive sillenite-family crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.