Abstract

We introduce a mechanism for light-induced Floquet engineering of the Fermi surface to dynamically tip the balance between competing instabilities in correlated condensed matter systems in the vicinity of a Van Hove singularity. We first calculate how the Fermi surface is deformed by an off-resonant, high-frequency light field and then determine the impact of this deformation on the ordering tendencies using an unbiased functional renormalization group approach. As a testbed, we investigate Floquet engineering in cuprates driven by light. We find that the $d$-wave superconducting ordering tendency in this system can be strongly enhanced over the Mott insulating one. This gives rise to extended regions of induced $d$-wave superconductivity in the effective phase diagram in the presence of a light field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call