Abstract

We study the quantum many-body instabilities of interacting electrons with SU(2)$\times$SU(2) symmetry in spin and orbital degrees of freedom on the triangular lattice near van-Hove filling. Our work is motivated by effective models for the flat bands in hexagonal moir\'e heterostructures like twisted bilayer boron nitride and trilayer graphene-boron nitride systems. We consider an extended Hubbard model including onsite Hubbard and Hund's couplings, as well as nearest-neighbor exchange interactions and analyze the different ordering tendencies with the help of an unbiased functional renormalization group approach. We find three classes of instabilities controlled by the filling and bare interactions. For a nested Fermi surface at van-Hove filling, Hund-like couplings induce a weak instability towards spin or orbital density wave phases. An SU(4) exchange interaction moves the system towards a Chern insulator, which is robust with respect to perturbations from Hund-like interactions or deviations from perfect nesting. Further, in an extended range of fillings and interactions, we find topological $d\pm id$ and (spin-singlet)-(orbital-singlet) $f$-wave superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.