Abstract

Visible light-induced charge separation and directional charge transfer are cornerstones for artificial photosynthesis and the generation of solar fuels. Here, we report synthetic access to a series of noble metal-free donor-acceptor dyads based on bodipy light-absorbers and redox-active quinone/anthraquinone charge storage sites. Peripheral functionalization of the quinone/anthraquinone units with alkynes primes the dyads for integration into a range of light-harvesting systems, e. g., by Cu-catalyzed cycloadditions (CLICK chemistry) or Pd-catalyzed C-C cross-coupling reactions. Initial photophysical, electrochemical and theoretical analyses reveal the principal processes during the light-induced charge separation in the reported dyads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call