Abstract

Direct charge transfer at wet-processed organic/organic heterojunction interfaces is observed using femtosecond interfacial sensitive spectroscopy. UV–vis absorption and ultraviolet photoelectron spectroscopy both indicate that a new interfacial energy gap (∼1.2 eV) exists when an interface is formed between regioregular poly(3-hexylthiophene-2,5-diyl) and poly(benzimidazobenzophenanthroline). Resonant pumping at 1.2 eV creates an electric field-induced second-order optical signal, suggesting the existence of a transient electric field due to separated electrons and holes at interfaces, which recombine through a nongeminate process. The fact that direct charge transfer exists at wet-processed organic/organic heterojunctions provides a physical foundation for the previously reported ground-state charge transfer phenomenon. Also, it creates new opportunities to better control charge transfer with preserved momentum and spins at organic material interfaces for spintronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call