Abstract

We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans.

Highlights

  • Fatty acids (FA) are major components of most of the important lipids in eukaryotic organisms

  • Our aim was to determine if we could discern, under rigorously standardized conditions, common patterns in the responses of FAs, in specific lipid classes, to light in phytoplankton species originating from different taxonomic classes

  • Our study confirms that phytoplankton species of different taxonomic classes show different FA compositions in their lipid classes

Read more

Summary

Introduction

Fatty acids (FA) are major components of most of the important lipids in eukaryotic organisms. Not much is known about their function, but, like PL, they seem to be structural components of membranes and it has been tentatively suggested that, unlike PL, they might not be affected by light intensity (Khotimchenko and Yakovleva, 2004). Apart from their structural role, FA and their associated lipids are important functional molecules. FA composition of the different lipid classes varies with species and with environmental conditions These variations in biochemical composition allow algae to survive as environmental conditions change

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call