Abstract

Future PHz electronic devices may be able to perform operations on few-femtosecond time-scales. Such devices are based on the ability to control currents induced by intense few-cycle laser pulses. Investigations of this control scheme have been based on complex, amplified laser systems, typically delivering mJ or sub-mJ-level laser pulses, limiting the achievable clock rate to the kHz regime. Here, we demonstrate transient metallization and lightwave-driven current control with 300-pJ laser pulses at 80 MHz repetition rate in dielectric media (HfO2 and fused silica), and the wide-bandgap semiconductor GaN. We determine the field strength dependence of optically induced currents in these media. Supported by a theoretical model, we show scaling behaviors that will be instrumental in the construction of PHz electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call