Abstract

The total internal reflection restricts light extraction efficiency of scintillator, leading to reduced detection efficiency and signal-to-noise ratio in the field of scintillator-based radiation detection system. This research presents the method of applying microlens arrays to improve the light extraction efficiency as well as achieve directional control of emission for scintillators. For BGO (Bi4Ge3O12) scintillator covered with PMMA (polymethyl-methacrylate) hemispherical microlens array, the 2.59-fold in particular angle (θem = 45°) and overall 1.94-fold angle-integrated enhancement ratios have been obtained. Furthermore, we analyze and optimize some parameters of microlens arrays such as the packing arrangement, duty ratio, size, refractive index, and shape. As a result, when the refractive index of microlens is slightly larger than that of scintillator, a maximum 6.23-fold angle-integrated enhancements can be achieved. It can be concluded that the microlens array covered on scintillator has considerable value for practical applications on radiation detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call