Abstract

The production of light nuclei via the interactions of jets from the central engines of active galactic nuclei (AGNs) and the surrounding medium are studied. Several environments ranging from hot, dense knots of gas near the central engine to the cold broad line region clouds are simulated by a nuclear reaction network that couples the thermonuclear processes in the cloud to the reactions between the jet particles and the cloud. Reaction products from the jet-cloud interactions are followed until they react or are thermalized, which may involve several subsequent reactions. Enhanced production of light nuclei well above their primordial abundances is possible even, under some conditions, of CNO nuclei. In these scenarios, the jets can enhance abundances of CNO nuclei by first producing excess amounts of nuclei with A<8, then by increasing the cloud density to the point at which the thermonuclear reaction rates become important. The comparison to observed abundances in quasars (QSOs) leads to the conclusion that the interactions of ejected matter from AGNs may be responsible for large observed abundances of light nuclei in addition to significant abundances of nuclei in the CNO region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.