Abstract

Daylight distribution is an essential performance parameter for building facades that aim to maximize user comfort while maintaining energy efficiency. This study investigates the feasibility of using 3D-printed thermoplastic to improve daylight distribution and transmission. To identify how geometry influences light distribution and transmission, 12 samples with various patterns were robotically fabricated. In a physical simulation of spring, summer, and winter, a robotic arm was used to direct light onto the samples in both the vertical and horizontal print pattern directions. In addition, three samples of conventional facade materials, including a polycarbonate panel, a polycarbonate sheet, and a single sheet of glass, were compared with the 3D-printed samples. All samples were examined and compared using high dynamic range imaging to qualitatively characterize luminance. The data analysis demonstrated that 3D-printed geometry can successfully generate customizable diffusive light distribution based on the needs of the user. Furthermore, the results showed that the vertical pattern direction had higher light transmission values than the horizontal pattern direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call