Abstract

Light intensity is an important environmental factor affecting the structure of fish assemblages during the day-night cycle. Light influences how organisms perceive their environment, modulating their intraspecific and interspecific relationships. The relationship between light intensity variations and biological cycles should be observed at the level of organismal morphology. In this study the relationship between activity rhythms, thus light intensity experienced by fish in the period of major activity and external morphology, have been investigated. The morphological traits of 97 selected fish species were compared in order to determine the existence of a common morphological plan in agreement with their diurnal or nocturnal activity rhythm. Species sorting was performed by maximizing the diversity of activity rhythm, habitat choice, ecology, and trophic habits within the same family, to assess the importance of the day-night cycle on species morphology in relation to other environmental features. The morphological characters selected for the geometric morphometric analysis were body profile and the position of mouth, eye, pelvic, pectoral, dorsal, and caudal fin. The present analysis allowed different consensus forms for nocturnal and for diurnal species to be identified. Two-block Partial Least Squares analysis was then performed for the purpose of modeling the covariation between the form and two important external variables (ecology and activity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.