Abstract

GABA is a likely feedback transmitter from H1 horizontal cells to cone photoreceptors in fish retinas. Spinules arise from H1 cell dendrites in light-adapted retinas, are correlated with responses attributed to feedback, and have been proposed to be the GABA release sites. We used mAb 62-3G1, an antibody against the beta 2/beta 3 subunits of the GABAA receptor complex, to visualize GABAA receptor immunoreactivity (GABAr-IR) in photoreceptors as a function of light and dark adaptation at the electron microscopical level. Regardless of adaptation, GABAr-IR was restricted to the synaptic terminals of all cones and most rods; synaptic vesicular membrane and plasma membrane, exhibited GABAr-IR. Contrary to expectations, the density of GABAr-IR was least on the plasma membrane within the invagination, regardless of the presence or absence of spinules. Dense GABAr-IR was observed on the lateral surface of cone pedicles, on cone processes proximal to the invagination, and on presumed telodendria from nearby cones. There was no difference in GABAr-IR of rod plasma membranes within or outside of the invagination or with adaptation. The only novel effect of adaptation was in regards to the density of synaptic vesicles. Cones showed a 29% increase in vesicle density with dark adaptation, whereas rods showed a 17% decrease. We conclude that all goldfish photoreceptors will be GABA-sensitive and that the sensitivity is distributed over the surface of the synaptic terminal rather than localized to within the invagination. The role of spinules in GABA release remains to be determined, but we conclude that spinules are not related to the GABA sensitivity of goldfish photoreceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call