Abstract

Vascular plants have evolved a long-term light acclimation strategy primarily relying on the regulation of the relative amounts of light-harvesting complex II (LHCII) and of the two photosystems, photosystem I (PSI) and photosystem II (PSII). We investigated whether such a model is also valid in Selaginella martensii, a species belonging to the early diverging group of lycophytes. Selaginellamartensii plants were acclimated to three natural light regimes (extremely low light (L), medium light (M) and full sunlight (H)) and thylakoid organization was characterized combining ultrastructural, biochemical and functional methods. From L to H plants, thylakoid architecture was rearranged from (pseudo)lamellar to predominantly granal, the PSII : PSI ratio changed in favour of PSI, and the photochemical capacity increased. However, regulation of light harvesting did not occur through variations in the amount of free LHCII, but rather resulted from the flexibility of the association of free LHCII with PSII and PSI. In lycophytes, the free interspersed LHCII serves a fixed proportion of reaction centres, either PSII or PSI, and the regulation of PSI-LHCII(-PSII) megacomplexes is an integral part of long-term acclimation. Free LHCII ensures photoprotection of PSII, allows regulated use of PSI as an energy quencher, and can also quench endangered PSI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.