Abstract
Four two-dimensional (2D), fluorinated metal-organic frameworks (MOFs), [Cu(hfipbb)(DMF)]n·0.5(DMF)n (1), [Cu(hfipbb)(DEF)]n (2), [Cu3(hfipbb)3(DMA)3]n·6(DMA)n·2(H2O)n (3), and [Cu2(hfipbb)2(DEA)2]n·2(DEA)n·2(H2O)n (4), have been synthesized where hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoate), DMF = N,N'-dimethylformamide, DEF = N,N'-diethylformamide, DMA = N,N'-dimethylacetamide, and DEA = N,N'-diethylacetamide. The choice of either a formamide or acetamide solvent ligand leads to a 2D, doubly interpenetrated (1 and 2) or noninterpenetrated (3 and 4) MOF structure. Despite their lower potential void spaces, the doubly interpenetrated structures have superior carbon dioxide and hydrogen sorption properties. Their 195 K CO2 sorption isotherms display inflection points, followed by ∼3-fold increases in their sorption capacities and very large extents of hysteretic behavior. This shows that small changes in the identity of the ligated solvent ligand can affect whether the resulting MOF is interpenetrated or noninterpenetrated and so drastically affect the sorption properties. In addition, the activated phase of a fifth MOF, synthesized through DMF ligand exchange with water in 1 (1W), does not display an inflection point and subsequent increased CO2 sorption at 195 K, despite having the same degree of interpenetration, showing that even more subtle differences in the desolvated phases can lead to marked differences in their sorption behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.