Abstract
A mutant of the ferric enterobactin receptor, FepA, containing a valine to cysteine (V338C) substitution was made and the purified protein selectively modified with a sulfhydryl-specific nitroxide spin label. In reconstituted liposomes, interaction of the attached spin label with a combination of water-soluble and lipid-soluble relaxation agents indicated that the V338C site was located in the polar headgroup region of the membrane, approximately 1.5-4.5 A above the phosphate groups of the lipids. Binding of the ligand, ferric enterobactin (FeEnt), to the purified spin-labeled protein produced a significant decrease in both the rotational freedom and accessibility of the nitroxide, indicating the formation of new structural contacts between the spin label and either the protein or the bound ligand. Electron spin-echo (ESE) measurements of the nitroxide phase-memory relaxation rate in the presence and absence of bound ligand showed substantial dipolar coupling between the Fe3+ of FeEnt and the spin label and provided an iron-nitroxide distance estimate in the range of 20-30 A. We conclude that the ligand-induced changes in spin label motion and accessibility are due to new tertiary contacts with the protein and not to direct contact with the ligand. These studies suggest that V338C may occupy a hinge region connecting the ligand binding surface loop to the beta-barrel and provide the strongest evidence to date of an in vitro ligand-induced conformational change in FepA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have