Abstract

BackgroundQuinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H2L; primary ligand) with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands) towards oxidovanadium (IV) ions.ResultsMono- and binuclear oxidovanadium (IV) - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV)- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen), 1,10-phenanthroline (Phen) or 8-hydroxyquinoline (Oxine). The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging). All the obtained complexes have the preferable octahedral geometry except the oxinato complex (2) which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study.ConclusionThe ligand exchange (substitution/replacement) reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine) compared to the phenolic quinolyl hydrazone (H2L) towards oxidovanadium (IV) ion; (complexes 2 and 3). By contrast, in case of the more flexible aliphatic competitor (Tmen), an adduct was obtained (4). The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV)- ion; Oxine or Phen >> phenolic hydrazone (H2L) > Tmen.

Highlights

  • IntroductionQuinolyl hydrazones constitute a class of excellent chelating agents

  • Quinoline ring has therapeutic and biological activities

  • The physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions [3,4]

Read more

Summary

Introduction

Quinolyl hydrazones constitute a class of excellent chelating agents. The heterocyclic hydrazones constitute an important class of biologically active drug molecules which have attracted attention of medicinal chemists due to their wide ranging pharmacological properties including iron scavenging and anti- tubercular activities [1,2,3,4]. The physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions [3,4].

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.