Abstract
The kinetics of substitution reactions of the CuODA and CuTDA binary complexes (ODA = oxydiacetate, TDA = thiodiacetate) with 1,10-phenanthroline (phen) and 2,2’-bipyridine (bipy) were studied in aqueous and DMSO solutions. These reactions were monitored spectrometrically using the stopped-flow method in the UV range. The studies were carried out at three temperatures - 298.15, 303.15 and 308.15 K. The concentrations of the binary complexes were kept within the range of 0.2–0.5 mmol L−1, whereas the concentration of phen or bipy was constant = 0.05 mmol L−1. The values of the reaction rate constants were calculated based on the A → B reaction model. A linear relationship of the rate of the substitution reaction versus the concentration of the binary complex as well as temperature was observed. The impact of the type of the primary (ODA and TDA) and auxiliary ligands (phen and bipy) as well as the effect of solvent on the rate of substitution reaction have been discussed. The impact of the primary (ODA = oxydiacetate, TDA = thiodiacetate) and auxiliary ligands (phen and bipy) as well as the effect of solvents (DMSO and water) on the rate of substitution reaction of Cu(II) complexes have been discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.