Abstract

Intracellular trafficking of hydrophobic ligands is often mediated by specific binding proteins. The CRAL-TRIO motif is common to several lipid binding proteins including the cellular retinaldehyde binding protein (CRALBP), the alpha-tocopherol transfer protein (alpha-TTP), yeast phosphatidylinositol transfer protein (Sec14p), and supernatant protein factor (SPF). To examine the ligand specificity of these proteins, we measured their affinity toward a variety of hydrophobic ligands using a competitive [(3)H]-RRR-alpha-tocopherol binding assay. Alpha-TTP preferentially bound RRR-alpha-tocopherol over all other tocols assayed, exhibiting a K(d) of 25 nM. Binding affinities of other tocols for alphaTTP closely paralleled their ability to inhibit in vitro intermembrane transfer and their potency in biological assays. All other homologous proteins studied bound alpha-tocopherol but with pronouncedly weaker (> 10-fold) affinities than alpha-TTP. Sec14p demonstrated a K(d) of 373 nM for alpha-tocopherol, similar to that for its native ligand, phosphatidylinositol (381 nM). Human SPF had the highest affinity for phosphatidylinositol (216 nM) and gamma-tocopherol (268 nM) and significantly weaker affinity for alpha-tocopherol (K(d) 615 nM). SPF bound [(3)H]-squalene more weakly (879 nM) than the other ligands. Our data suggest that of all known CRAL-TRIO proteins, only alphaTTP is likely to serve as the physiological mediator of alpha-tocopherol's biological activity. Further, ligand promiscuity observed within this family suggests that caution should be exercised when suggesting protein function(s) from measurements utilizing a single ligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call