Abstract

Supernatant protein factor is a 46-kDa cytosolic protein that stimulates squalene monooxygenase, a downstream enzyme in the cholesterol biosynthetic pathway. The mechanism of stimulation is poorly understood, although supernatant protein factor belongs to a family of lipid-binding proteins that includes Sec14p and alpha-tocopherol transfer protein. Because recombinant human supernatant protein factor purified from Escherichia coli exhibited a relatively weak ability to activate microsomal squalene monooxygenase, we investigated the possibility that cofactors or post-translational modifications were necessary for full activity. Addition of ATP to rat liver cytosol increased supernatant protein factor activity by more than 2-fold and could be prevented by the addition of inhibitors of protein kinases A and C. Incubation of purified recombinant supernatant protein factor with ATP and protein kinases A or C delta similarly increased activity by more than 2-fold. Addition of protein phosphatase 1 gamma, a serine/threonine phosphatase, to rat liver cytosol reduced activity by 50%, suggesting that supernatant protein factor is partially phosphorylated in vivo. To determine whether dietary cholesterol influenced the phosphorylation state, cytosols were prepared from livers of rats fed a high fat diet. Although supernatant protein factor activity was reduced by more than one-half, it could not be restored by the addition of ATP or protein kinase C delta with ATP, suggesting that dietary cholesterol reduced the expression of this protein. Supernatant protein factor thus appears to be regulated both post-translationally through phosphorylation and at the level of expression. Phosphorylation may provide a means for the rapid short term modulation of cholesterol synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.