Abstract
In this study, all-inorganic perovskite quantum dots (QDs) for pure blue emission are explored for full-color displays. We prepared CsPbBr3 and Cs3NdCl6 QDs via hot injection methods and mixed in various ratios at room temperature for color blending. Nd-doped CsPb(Cl/Br)3 QDs showed a blueshift in emission, and the photoluminescence quantum yields (PLQY, ΦPL) were lower in the 460-470 nm range due to surface halogen and Cs vacancies. To address this, we introduced a silane molecule, APTMS, via a ligand exchange process, effectively repairing these vacancies and enhancing Nd doping into the lattice. This modification promotes the PLQY to 94% at 466 nm. Furthermore, combining these QDs with [1]Benzothieno[3,2-b][1]benzothiophene (BTBT), a conjugated small-molecule semiconductor, in a composite film reduced PLQY loss caused by FRET in solid-state QD films. This approach achieved a wide color gamut of 124% National Television System Committee (NTSC), using a UV LED backlight and RGB perovskite QDs in a BTBT-based organic matrix as the color conversion layer. Significantly, the photostability of this composite was enhanced when used as a color conversion layer (CCL) under blue-LED excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.