Abstract

Organic ligands are widely distributed and can affect microbially driven Fe biogeochemical cycles, but effects on microbial iron oxidation have not been well quantified. Our work used a model microaerophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1 to quantify biotic Fe(II) oxidation rates in the presence of organic ligands at 0.02 atm O2 and pH 6.0. We used two common Fe chelators with different binding strengths: citrate (log KFe(II)-citrate = 3.20) and nitrilotriacetic acid (NTA) (log KFe(II)-NTA = 8.09) and two standard humic substances, Pahokee peat humic acid (PPHA) and Suwannee River fulvic acid (SRFA). Our results provide rate constants for biotic and abiotic Fe(II) oxidation over different ligand concentrations and furthermore demonstrate that various models and natural iron-binding ligands each have distinct effects on abiotic versus biotic Fe(II) oxidation rates. We show that NTA accelerates abiotic oxidation and citrate has negligible effects, making it a better laboratory chelator. The humic substances only affect biotic Fe(II) oxidation, via a combination of chelation and electron transfer. PPHA accelerates biotic Fe(II) oxidation, while SRFA decelerates or accelerates the rate depending on concentration. The specific nature of organic-Fe microbe interactions may play key roles in environmental Fe(II) oxidation, which have cascading influences on cycling of nutrients and contaminants that associate with Fe oxide minerals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call