Abstract
A strategy combining ligand design and counterion variation has been used to investigate the assembly of silver(I) complexes. As a result, dinuclear, octanuclear, and polymeric silver(I) species have been synthesized by complexation of the rigid aliphatic amino ligands cis-3,5-diamino-trans-hydroxycyclohexane (DAHC), cis-3,5-diamino-trans-methoxycyclohexane (DAMC), and cis-3,5-diamino-trans-tert-butyldimethylsilylanyloxycyclohexane (DATC) with silver(I) triflate, nitrate, and perchlorate. The compositions of these aggregates, established by X-ray crystallography and elemental analysis, are [{Ag(DAHC)}2](CF3SO3)2 (1), [{Ag(DAMC)}2](CF3SO3)2 (2), [{Ag(DAMC)}2](NO3)2 (3), [{Ag(DATC)}6{Ag(DAHC)}2](NO3)8 (4), and [{Ag(DATC}n](NO3)n (5), where the DAHC present in 4 is formed by in situ hydrolysis of the acid labile silyl ether group. The type of aggregate formed depends both upon the noncoordinating O-substituent of the ligand and the (also noncoordinating) counterion, with the normal preference of the ligand topology for forming Ag2L2 structures being broken by introduction of the bulky, lipophilic O-tert-butyldimethylsilyl (TBDMS) group. Of particular note is the octanuclear silver ring structure 4, which is isolated only when both the O-TBDMS group and the nitrate counteranion are present and is formed from four Ag2L2 dimers connected by Ag...Ag and hydrogen-bonding interactions. Diffusion rate measurement of this {Ag8} complex by 1H NMR (DOSY) indicates dissociation in CD3OD and CD3CN, showing that this supramolecular ring structure is formed upon crystallization, and establishing a qualitative limit to the strength of Ag...Ag interactions in solution. When solutions of the {Ag8} cluster in methanol are kept for several days though, a new UV-vis absorption is observed at around 430 nm, consistent with the formation of silver nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.