Abstract
Color-center-based single-photon emitters in hexagonal boron nitride (h-BN) have shown promising photophysical properties as sources for quantum light emission. Despite significant advances toward such a goal, achieving lifetime-limited quantum light emission in h-BN has proven to be challenging, primarily due to various broadening mechanisms, including spectral diffusion. Here, we propose and experimentally demonstrate suppression of spectral diffusion by applying an electrostatic field. We observe both Stark shift tuning of the resonant emission wavelength and emission line width reduction (down to 89 MHz) nearly to the homogeneously broadened lifetime limit. Finally, we find a cubic dependence of the line width with respect to temperature at the homogeneous broadening regime. Our results suggest that field tuning in electrostatically gated heterostructures is promising as an approach to control the emission characteristics of h-BN color centers, removing spectral diffusion and providing the energy tunability necessary for integrate of quantum light emission in nanophotonic architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.