Abstract

A novel theoretical and experimental approach for lifetime modelling of MCrAlY coatings for stationary gas turbines has been undertaken using the Inverse Problem Solution (IPS) technique. With this technique feasible experimental data acquired after a defined experimental time t e are used as input values for the model parameters estimation. In the first stage of the approach a model, based on the oxidation and diffusion processes (Fick's first and second law) was assumed, which considers the Al concentration profile across the coating. The measured average Al concentration profiles in the two-phase g+b and g - regions of coating as well as base metal were used as input values for the model parameters estimation and calculational prediction of the long term diffusion and oxidation behavior of the coating was performed. The time, when the b-NiAl phase is completely consumed was assumed as the coating lifetime end. Exposure experiments were carried out with a NiCoCrAlY coating (200 micron thickness) with 8% Al in air at 900 °C and 950 °C, currently up to 10000 h. The oxide scale is growing continuously and no other oxides were observed. The average and b-NiAl phase concentration profiles of Al across the coating thickness were determined by electron microprobe and image analysis systems in the initial state after 700 and 10000 h of oxidation. The concentration profile measured after 700 h was used as input values for the model parameters estimation in order to calculate the Al and b-NiAl phase concentration profiles after 10000 h. The computational forecast for 10000 h at 950 °C and 900 °C are in good agreement with the measured data. The approach was applied for NiCoCrAlY (200 micron thickness) coating lifetime modelling at 950 °C and 900 °C as well as for different coating thicknesses at 950 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.