Abstract

Miniaturization of magnon-based devices into the nanometer range would require the utilization of exchange-dominated spin waves of nanometer wavelength. In experiment and theory we show that the intrinsic lifetime and mean free path of the homogeneous acoustic spin wave in ultrathin cobalt films is sufficiently long for such applications provided that the films are atomically flat. The presence of surface steps, however, shortens lifetime and mean free path. The experimental data are consistent with a model which assumes that steps act as perfect sinks for spin waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.