Abstract
This paper presents a life-cycle cost analysis of prestressed concrete highway bridges using carbon fiber-reinforced polymer (CFRP) reinforcement bars and strands. Side-by-side box beam and AASHTO beam bridge structures were considered over several span lengths and traffic volumes. The results show that despite the higher initial construction cost of CFRP reinforced bridges, they can be cost-effective when compared to traditional steel-reinforced bridges. The most cost-efficient design was found to be a medium-span CFRP reinforced AASHTO beam bridge located in a high-traffic area. A probabilistic analysis revealed that there is greater than a 95% probability that the CFRP reinforced bridge will become the least expensive option between 20 and 40 years of service, depending on traffic volume and bridge geometry. The break-even year between CFRP and steel reinforcement is typically at the time of the first major repair activity on the steel-reinforced concrete bridge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.