Abstract

An improved hybrid submodule employs a direct current (DC) short current protection function to improve the reliability of a high-voltage direct current (HVDC) system. However, it increases the number of circuit components to implement the protection. So, we need to evaluate the relationship between the protection function and the increased number of circuit components to assess whether the improved hybrid submodule (IHSM) is suitable to practical application or not from the viewpoint of reliability. Although conventional part count failure analysis considers the type and the number of parts, it cannot reflect the operational characteristics of the submodule. To overcome this problem, we design a fault tree that reflects the operational characteristics of IHSM and calculates the failure rate by using MIL-HDBK-217F. By part count failure analysis (PCA) and fault-tree analysis (FTA), we prove the high reliability of IHSM compared to half-bridge, full-bridge, and clamped-double submodules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.