Abstract

The popularization of conventional dimethyl oxalate to ethylene glycol (DMOtEG) has kept ongoing in the past decade in China. Recently, a northern China factory in construction attracts attention using alternative formaldehyde to ethylene glycol (FtEG) route. Thus, a question arises about the individual comparative advantages of these two processes. So, this paper conducts a systematic modeling analysis of DMOtEG and FtEG, and the life cycle assessment is performed by SimaPro v9 to compare their impact. The results indicate the inferiority of life cycle energy consumption and life cycle cost of FtEG to those of DMOtEG due to the high energy consumption and pollutant emissions. Moreover, most impact categories of FtEG are worse than the DMOtEG as global warming, and photochemical oxidant formation potential. Despite this, FtEG still wins for better potentials in ozone formation, fine particulate matter formation, and terrestrial acidification because of less nitride emissions. In addition, the decrease in energy consumption and external cost will significantly decrease the life cycle cost under controllable catalyst costs of FtEG. These results describe the impact categories of DMOtEG and FtEG and provide a basis to help decision-makers develop coal to ethylene glycol processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call