Abstract
Electric mobility is playing an important and growing role in the context of sustainable transport sector development. This study presents the life cycle assessment of an electric car based on the technology of Lithium-ion battery (BEV) for Europe and compares it to an internal combustion engine vehicle (ICEV). According to a cradle-to-grave approach, manufacturing, use and disposal phases of both vehicles have been included in the assessment in order to identify the hot spots of the entire life cycles. For electric vehicles two manufacturing inventories have been analysed and different vehicle disposal pathways have also been considered. Furthermore, the environmental performances of hybrid vehicles have been analysed based on the life cycle models of the BEV and ICEV. The results of the hot spot analysis showed that the BEV manufacturing phase determined the highest environmental burdens mainly in the toxicity categories as a result of the use of metals in the battery pack. However, the greenhouse gas emissions associated with the BEV use phase were shown to be half than those recorded for the ICEV use phase. The trend of the results has also been investigated for future energy mixes: the electricity and diesel mixes for the year 2050 have been considered for the modelling of the use phase of BEV and ICEV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.