Abstract

Buildings are responsible for a significant part of the global energy consumption. Besides the need to improve their energy efficiency, new buildings also need to generate their own energy, preferably from renewable sources, to become more sustainable. As renewable energy generation is strongly dependent on the climatic conditions, energy storage must be considered when designing such a system. In this study, a cradle-to-grave life cycle assessment (LCA) study of a renewable energy generation system with a prototype Vanadium flow battery integrated in a Near Zero Energy Building (NZEB) is performed. A combined grid-connected PV and a solar thermal system generates the energy, and it was dimensioned to supply the annual energy needs of a household in Porto, Portugal considering the local climatic conditions. As an end of life scenario, it is assumed that the battery is dismantled and most of the materials are recycled. A functional unit of 1 kWh of supplied energy to the system was considered, and study results show that environmental impacts are reduced when the energy is produced onsite and the battery components are recycled or reused. A sensitivity analysis was conducted changing the household’s geographic location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.