Abstract

To investigate the electrochemical performance of MO (M=Co, Fe, Ni) nanostructures on lithium insertion and extraction, size-controlled LiF-MO nanocomposite thin-film electrodes, consisting of metallic M and M oxide (MO) nanoparticles in an amorphous, inert LiF matrix, were designed and fabricated using a RF sputtering system with metallic M and LiF mixture targets. The structural and electrochemical properties of nanocomposite thin-film electrodes were characterized using TEM, SAED, XRD, XPS, and electrochemical measurements. The results showed that MO particles with average particle sizes of ca.10nm were well-dispersed in LiF matrix to form a kind of homogeneous LiFMO nanocomposite by the sputtering method. The inert medium of LiF provides an effective matrix to prevent the crystallization and agglomeration of MO during the deposition and electrochemical cycling of the thin film electrode, and then the well-formed nanophase structure in the nanocomposite thin-film electrodes leads to an excellent electrochemical cycling performance with the stable discharge specific capacity above 300mAh/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.