Abstract

Abstract MnO2 embedded PPy nanocomposite (MnO2/PPy) thin film electrodes were electrochemically synthesized over polished graphite susbtrates. Growing PPy polymer chains provides large surface area template that enables MnO2 to form as nanoparticles embeded within polymer matrix. Co-deposition of MnO2 and PPy has a complimentary action in which porous PPy matrix provides high active surface area for the MnO2 nanoparticles and, on the other hand, MnO2 nanoparticles nucleated over polymer chains contribute to enhanced conductivity and stability of the nanocomposite material by interlinking the PPy polymer chains. The MnO2/PPy nanocomposite thin film electrodes show significant improvement in the redox performance as cyclic voltammetric studies have shown. Specific capacitance of the nanocomposite is remarkably high (∼620 F g−1) in comparision to its constituents MnO2 (∼225 F g−1) and PPy (∼250 F g−1). Photoelectron spectroscopy studies show that hydrated manganese oxide in the nanocomposite exists in the mixed Mn(II) to Mn(IV) oxidation states. Accordingly, chemical structures of MnO2 and PPy constituents in the nanocomposite are not influenced by the co-deposition process. The MnO2/PPy nanocomposite electrode material however shows significantly improved high specific capacitity, charge–discharge stability and the redox performance properties suitable for application in the high energy density supercapcitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call