Abstract

In direct-injection engines, fuel components of different volatility can segregate in the transient evaporating spray. The resulting spatial mixture inhomogeneities may impact ignition and combustion. The technique presented here images the effect of preferential evaporation of a multi-component gasoline surrogate fuel in an optically-accessible direct-injection engine motored on nitrogen. It is based on laser-induced fluorescence (LIF) of two aromatic tracers with different volatilities, 1,4-difluorobenzene (representing light to medium components) and 1-methylnaphthalene (heavy component) added to a base-fuel of n-pentane, iso-octane, and n-undecane. LIF from the two tracers is spectrally separated and detected on two cameras, with channel crosstalk corrected in post-processing. Consistent with previous measurements in a high-pressure vessel, the light components are preferentially found downstream, towards the front of the evaporated fuel jet. Throughout large regions of the field of view, about 20% surplus of 1-methylnaphthalene is found, and throughout smaller ones about 40% of 1,4-difluorobenzene. To better assess the impact of the (unknown) local temperature on the measurement accuracy, two-color thermometry based on LIF of anisole (methoxybenzene) is performed in separate experiments. In the relevant range of crank-angles the local temperature is found to be 25 K lower in regions of high fuel concentration than in the rest of the charge, implying a systematic temperature-induced error in the fuel-tracer ratio of 0.11.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call