Abstract
The occurrence characteristics of shale oil have a significant impact on its mobility and the ultimate oil recovery. How to quantitatively characterize the occurrence and distribution characteristics of shale oil is a challenging task. Accordingly, the laser scanning confocal microscopy (LSCM) combined with saturated oil experiment is used to quantitatively characterize the pseudo in-situ occurrence characteristics of light and heavy components of shale oil in sub-micron scale in Fengcheng Formation of Mahu Sag. Furthermore, the main controlling factors of light and heavy components’ occurrence characteristics are comprehensively investigated in this study. The results show that: (1) Shale wettability significantly affects the occurrence state of shale oil. The heavy components are prone to exist on the surface of oil-wet minerals and organic matter of shale compared with light components. (2) Shale oil is relatively rich in bright laminas and the content of light components is higher in contrast to dark laminas. (3) The temperature has a greater impact on the heavy components and pressure has a multistage impact on the occurrence state of shale oil. The microscopic preferential fluid occurrence index, Δ∅H−L, is proposed to interpret the microscopic occurrence mechanism of the light and heavy components under different pressure conditions, which provides a new perspective on the shale oil occurrence mechanism. (4) Shale oil is not easy to be enriched in dolomitic lumps and alkaline minerals due to their low pore development level. Overall, the outcomes of this study are of great significance to the understanding of shale oil enrichment mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.