Abstract
I study a strategic-communication game between an informed sender and an uninformed receiver with partially aligned preferences. The receiver is endowed with the ability to probabilistically detect if the sender is lying. Specifically, if the sender is making a false claim about her type, with some commonly known probability p the receiver additionally observes a private signal indicating that the sender is lying. The main result is that the receiver’s stochastic lie-detection ability makes fully revealing equilibria—the best outcome for the receiver—possible, even for small p (less than $$\frac{1}{2}$$ ). Additionally, if the language consists of precise messages, fully revealing equilibria exist only for $$p=1$$ and for a set of intermediate values of p that is bounded away from 0 and 1, making the maximal ex-ante expected equilibrium utility of the receiver non-monotone in p. If vague messages are allowed, full revelation can be supported for all large enough p, overturning the non-monotonicity and improving communication outcomes relative to the precise-language case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.