Abstract

We apply the Lieb-Robinson bounds technique to find the maximum speed of interaction in a spin model with topological order whose low-energy effective theory describes light [see X.-G. Wen, Phys. Rev. B 68, 115413 (2003)10.1103/PhysRevB.68.115413]. The maximum speed of interactions in two dimensions is bounded from above by less than e times the speed of emerging light, giving a strong indication that light is indeed the maximum speed of interactions. This result does not rely on mean field theoretic methods. In higher spatial dimensions, the Lieb-Robinson speed is conjectured to increase linearly with the dimension itself. The implications for the horizon problem in cosmology are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.