Abstract
In the present article, Lie group of point transformations method is successfully applied to study the invariance properties of the $$(2+1)$$ -dimensional Pavlov equation. Applying the Lie symmetry method, we strictly obtain the infinitesimals, vector fields, commutation relation and several interesting symmetry reductions of the equation. The explicit exact solutions are derived under some limiting conditions imposed on the infinitesimals $$ \xi $$ , $$\phi $$ , $$ \tau $$ and $$ \eta $$ . Then, the Pavlov equation is transformed into a number of nonlinear ODEs through several symmetry reductions. These new exact solutions are more general and entirely different from the work of Kumar et al (Pramana – J. Phys. 94: 28 (2020)). The obtained invariant solutions are examined analytically as well as physically through numerical simulation by giving free alternative values of arbitrary functions and constants. Consequently, graphical representations of all these solutions are studied and demonstrated in 3D-graphics and the corresponding contour plots. Interestingly, the solution profiles show the annihilation of three-dimensional parabolic profile, doubly soliton and elastic multisolitons and nonlinear wave nature form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.